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We present an experimental study of an axisymmetric turbulent fountain in a two-
layer stratified environment. Interacting with the interface, the fountain is observed
to exhibit three regimes of flow. It may penetrate the interface, but nonetheless return
to the source where it spreads as a radially propagating gravity current; the return
flow may be trapped at the interface where it spreads as a radially propagating
intrusion or it may do both. These regimes have been classified using empirically
determined regime parameters which govern the relative initial momentum of the
fountain and the relative density difference of the fountain and the ambient fluid.
The maximum vertical distance travelled by the fountain in a two-layer fluid has
been theoretically determined by extending the theory developed for fountains in
a homogeneous environment. The theory compares favourably with experimental
measurements. We have also developed a theory to analyse the initial speeds of the
resulting radial currents. The spreading currents exhibited two different flow regimes:
a constant-velocity regime and an inertia-buoyancy regime in which the front position,
R, scales with time, t , as R ∼ t3/4. These regimes were classified using a critical Froude
number which characterized the competing effects of momentum and buoyancy in
the currents.

1. Introduction
Turbulent forced plumes in both homogeneous and stably stratified ambient fluids

have received considerable attention, in part owing to their environmental impact in
such areas as the disposal of sewage in the ocean and in lakes, volcanic eruptions into
the atmosphere and emissions from chimneys and flares. The dynamics of plumes
and fountains in enclosed spaces have been studied in order to improve the efficiency
through which rooms are heated and cooled (Lin & Linden 2005a).

Forced plumes are characterized by the competing effects of buoyancy and
momentum in the flow. In positively buoyant plumes, the buoyancy and momentum
are both in the same direction with buoyancy becoming more dominant at larger
distances away from the source. Negatively buoyant plumes, or fountains, are formed
either when dense fluid is continuously discharged upward into a less dense fluid or
when less dense fluid is injected downward into a more dense environment. In either
case, buoyancy opposes the momentum of the flow until the fountain reaches a height
where the vertical velocity goes to zero. The fountain then reverses direction and falls
back upon the source.
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Positively and negatively buoyant plumes have been examined theoretically and
experimentally as they evolve in homogeneous and in linearly stratified environments
(Priestley & Ball 1955; Morton 1959b; Turner 1966; Abraham 1963; Fischer et al.
1979; List 1982; Rodi 1982; Bloomfield & Kerr 1998; Bloomfield & Kerr 2000). Most
of this effort was directed at quantifying the width of the fountain, the initial and
final heights (or penetration depths) and the entrainment into the fountain.

Fountains in a two-layer stably stratified environment have received relatively little
attention despite their fundamental nature and their potential practical significance.
A ventilated room can naturally form a two layer-stratification and it is of interest
to know how cold air injected from below mixes in this environment. Jets and
fountains in two-layer ambient have also been reported in the situation of refuelling
compensated fuel tanks on naval vessels (Friedman & Katz 2000). The thermocline
in lakes and oceans and atmospheric inversions can be modelled approximately as
the interface of a two-layer fluid (Mellor 1996), and plumes and fountains can result
from the release of effluent into these environments (Rawn, Bowerman & Brooks
1960; Noutsopoulos & Nanou 1986).

This work is, in part, the first stage of a programme to understand the evolution of
pollutants from flares that disperse in the presence of an atmospheric inversion. At-
mospheric inversions, known for their strong vertical stability, can trap air pollutants
below or within them near ground level and so have adverse effects on human health.
Hazardous industrial materials that are released into the atmosphere usually form
clouds that are heavier than the atmosphere (Britter 1989). Both Morton (1959a) and
Scorer (1959) have applied available mathematical concepts of plume theory to study
the dispersion of pollutants in the atmosphere, but ignored the effects of an inversion.

Here we present an experimental study of an axisymmetric fountain impinging on
a density interface in a two-layer stably stratified environment. As in homogeneous
environments, the fountain comes to rest at a maximum height and then reverses
direction, interacting with the incident flow.

In a two-layer fluid, however, the reverse flow can either return to the level of the
source or it can become trapped at the density interface. In either case, the return flow
then goes on to spread radially outward. We wish to develop a better understanding
of the flow through measurements of maximum penetration height, quasi-steady-state
height and radial spreading rate.

There are few experimental studies on fountains in a two-layer environment.
Kapoor & Jaluria (1993) considered a two-dimensional fountain in a two-layer
thermally stratified ambient. They provided empirical formulae for the penetration
depths in terms of a defined Richardson number.

Some have considered a jet directed into a two-layer ambient with the initial
density of the jet being the same as the density of the ambient at the source (Shy
1995; Friedman & Katz 2000 and Lin & Linden 2005b). Those jets only become
negatively buoyant in the second layer.

Noutsopoulos & Nanou (1986) studied the upward discharge of a buoyant plume
into a two-layer stratified ambient and used a stratification parameter that depended
on the density differences in the flow to analyse their results.

One outstanding question concerns whether the reverse flow has a significant effect
on the axial velocity and density. By measuring temperatures in a heated turbulent
air jet discharged downward into an air environment, Seban, Behnia & Abreu (1978)
showed that the centreline temperatures and the penetration depth can be predicted
well by theories which consider the downward flow alone. Mizushina et al. (1982) made
a similar study of fountains by discharging cold water upward into an environment
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of heated water and found that the reverse flow had an effect on the axial velocity
measurements. They attributed the difference in their result from those of Seban et al.
(1978) to the enclosure used by Seban et al. in their experiments.

These experimental results have served to improve only modestly our understanding
of the dynamics of the reverse flow. A theoretical study aimed at incorporating the
reverse flow was first undertaken by McDougall (1981) who developed a set of
entrainment equations quantifying the mixing that occurs in the whole fountain.
The ideas developed in the model of McDougall (1981) have been built upon by
Bloomfield & Kerr (2000) by considering an alternative formulation for the
entrainment between the upflow and the downflow. Their results for the width of the
whole fountain, the centreline velocity and temperature compared favourably with
the experiments of Mizushina et al. (1982).

An important requirement for studying the dispersion of dense gases in the atmos-
phere is a knowledge of the distribution of the density as a function of space
and time (Britter 1989) and how fast the spreading pollutants are moving from a
particular location. The usual approach to obtaining information on fluid densities in
experiments is by extracting samples from the flow. This is difficult and has led to the
introduction of a relatively new approach of laser-induced fluorescence (LIF). This is,
however, limited to unstratified environments owing to problems with refractive index
fluctuations (Daviero, Roberts & Mile 2001). In this study, we do not take measure-
ments of the densities of the spreading currents, but we focus on taking measurements
of the initial speeds of the radial currents as they spread from the area of impingement.

In § 2, we review the theory for fountains in a one-layer environment and extend it
to the two-layer case. In § 3, we develop the theory for the axisymmetric spreading of
currents from fountains. In § 4, we describe the set-up of the laboratory experiments
and the techniques used to visualize the experiments, and we present their qualitative
analyses. In § 5, quantitative results from the experiments are presented. We analyse the
classification of the regimes of flow and compare the measured maximum penetration
height and spreading velocities to theoretical predictions. In § 6, we summarize the
results.

2. Theory: penetration height
The following theory is developed for fountains in which heavier fluid is injected

upward into a less dense environment. However, in a Boussinesq fluid, for which the
density variations are small compared with the characteristic density, the direction of
motion is immaterial to the equations governing their dynamics.

2.1. The maximum height in a one-layer ambient

The conventional and most widely used approach to solving problems of turbulent
buoyant jets is to use the conservation equations of turbulent flow of an incompressible
fluid and employ the Boussinesq and boundary-layer approximations. The resulting
equations are typically solved by using the Eulerian integral method (Turner 1973).
Here a form is first assumed for the velocity and concentration profiles of the plume.
This could either be the Gaussian profile or the top-hat profile. The equations are then
integrated over the plume cross-section and the assumed profiles are substituted. The
result is three ordinary differential equations (ODEs) which may be solved analytically
or numerically. However, an assumption has to be made to close the system of ODEs.
This could either be the entrainment assumption introduced by Morton, Taylor &
Turner (1956), or the spreading assumption introduced by Abraham (1963).
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A detailed description of the internal structure of the fountain can be found in
Abraham (1963) where the solution approach leads to a division of the fountain into
four zones: a zone of flow establishment where the fountain initially acts like a jet;
a zone of established flow where the flow is considered to be fully established and
permits the assumption of self-similarity; a zone of positive entrainment where the
fountain entrains fluid from the environment; and a zone of negative entrainment
(close to the maximum height) where the fountain does not entrain fluid from the
ambient, but begins to return toward the source.

When the fountain reverses direction from the maximum height, the rising upward
flow then entrains fluid from the downflow and vice versa and also continues to
entrain fluid from the environment until the fountain collapses at the level of the
source. It is difficult to ascertain the amount of the mixed fluid entrained into the
fountain, and the theoretical approach mentioned above treats the problem as if only
the ambient fluid is entrained.

An alternative approach is the Lagrangian method in which a marked material
volume issuing from a plume source is followed in time (Baines & Chu 1996;
Lee & Chu 2003). The solutions are much simpler to obtain and interpret and they
give very good agreement with the Eulerian integral method.

We give a brief review of the Lagrangian method for a fountain in a uniform
ambient. Newton’s law is applied to a material volume such that the rate of change
of the vertical momentum of the plume element is equal to the buoyancy force:

dM

dt
= −F0, (2.1)

where M and F0 are the momentum flux per unit mass and the buoyancy flux,
respectively. Explicitly, assuming a top-hat-shaped plume of radius r and mean
vertical velocity w, M = πr2w2 and F0 = πr2

0w0g
′, in which g′ = (ρa − ρ)g/ρ0 is the

reduced gravity, r0 is the source radius, w0 is the average vertical velocity at the
source, ρa is the ambient density, ρ is the density of the fountain at a given height
and ρ0 is a reference density taken as the initial density of the fountain. We apply the
spreading hypothesis which assumes that dr/dz = β , where β is a constant spreading
coefficient (β ≈ 0.17, Baines & Chu 1996). The buoyancy flux F0 is constant in a
uniform ambient. Thus we obtain the following relations for the radius, r , height,
z, volume flux, Q = πr2w, and momentum flux, M , of the fountain as a function of
time, t:
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, (2.4)

M = M0 − F0t, (2.5)

in which M0 = πr2
0w

2
0 is the momentum flux per unit mass at the source. Equations

(2.2)–(2.5) were derived assuming a point source of flow; nevertheless, they could
also be derived for any given source radius. At the maximum height, the momentum
flux goes to zero, so that from (2.5) we obtain the time taken to reach the maximum
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height as

tmax =
M0

F0

. (2.6)

Substituting (2.6) into (2.3), we obtain the maximum penetration height of the
fountain:

zmax = Cf

M
3/4
0

F
1/2
0

, (2.7)

where Cf =(4/3β
√

π)1/2 ≈ 2.10. This formula was also obtained by Turner (1966)
through dimensional considerations.

Equation (2.7) may be rewritten in terms of the source Froude number,
Fr0 = w0/

√
g′r0, such that

zmax = Cr0Fr0, (2.8)

in which C =
√

8/(3β) ≈ 3.96. As expected, (2.4) predicts that the volume flux decreases
toward zero at the maximum height, indicating a negative entrainment at the region
where the fountain fluid begins to fall toward the source. This also means that there
is a critical time when the volume flux is maximum. This critical time, tc, can be
explicitly calculated by differentiating (2.4) with respect to t and setting the resulting
expression to zero to obtain:
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5
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]

. (2.9)

Substituting tc into (2.4) gives the maximum volume flux:
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Before reaching the maximum height, conservation of buoyancy flux implies that the
density of the fountain can be calculated at each height once the volume flux is
known:

Q0g
′
0 = Qg′,

=⇒ ρ = ρa − Q0

Q
(ρa − ρ0). (2.11)

However, since the volume flux reduces to zero at the maximum height, Q in (2.11)
must be replaced by Qmax to calculate the density at the maximum height. This is
because the density will remain unchanged from tc to tmax owing to the negative
entrainment in this region.

Upon reaching the maximum height, the fountain reverses direction interacting
with the incident flow. The interaction between these two opposing fluids inhibits the
rise of the incident flow to the initial height and so it settles at a quasi-steady-state
height, zss . The theory above cannot be used to predict the final height; however,
experimental measurements show that zss ≈ 0.70zmax (Turner 1966).

The return flow continues to fall while entraining fluid from the environment and
the upward flow until it reaches the level of the source where it redirects from a
vertical flow to a radial current. There are no experimental studies on these radial
currents. However, it has been observed that the height of the radial currents is
proportional to the maximum height (Baines, Turner & Campbell 1990).
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Figure 1. Schematic of a fountain in a two-layer ambient.

2.2. The maximum height in a two-layer ambient

To obtain the maximum height in a two-layer ambient, we first calculate the centreline
fluxes of the upward-moving fluid at the interface using (2.2)–(2.5) (see figure 1). Then
we calculate the buoyancy flux, Fi , of the fountain above the interface, using the
approach of Noutsopoulos & Nanou (1986). Noutsopoulos & Nanou (1986) obtained
the nominal value of the buoyancy flux above the interface as

Fi =
1

ρ0

∫
A

g(ρ2 − ρ)w dA = g
(ρ1 − ρ0)

ρ0

Q0 − g
(ρ1 − ρ2)

ρ0

Qi = F0

[
1 − ε̃

Qi

Q0

]
,

where Qi = πr2
i wi is the volume flux, ri is the radius and wi is the velocity of the

fountain at the interface, and ε̃ = (ρ1 −ρ2)/(ρ1 −ρ0). Finally, using Fi , we calculate the
depth of the virtual origin below the interface, zvi , following the method of Morton
(1959b) (see Appendix A). This approach results in the following formula for the
maximum height

zmax,2 = H + CriF ri − zvi, (2.12)

where Fri = wi/
√

g(ρ2 − ρi)ri/ρ0, ρi is the density of the fountain at the interface and
H is the distance of the source from the interface.

The second and third terms in (2.12) estimate the maximum height of the fountain
from the interface. If the fountain penetrates little beyond the interface, the second
term may be less than zvi . The best estimate for the maximum height in such a case
should be zmax,2 ≈ H . The buoyancy flux above the interface may also be obtained
as Fi = g′

biQi , where g′
bi = g(ρ2 − ρi)/ρ0 is the reduced gravity of the fountain at the

interface.
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The procedure above assumes that the density difference between the layers is
small and considers the fountain from the interface as one moving in a one-
layer environment. The constant-spreading assumption may therefore be used in this
instance since the spreading rate of the fountain in the top layer as depicted in figure 1
is exaggerated only to illustrate the theoretical procedure. Our experiments show that
the fountain penetrates the interface without a noticeable change in structure (see
§ 4.2.2).

In this paper, we will also test the theoretical solution of Abraham (1963) who
obtained the following approximate analytic solution for the penetration of a turbulent
buoyant jet moving into an environment consisting of two layers of different densities:

zmax,2 =
(

2
5

)1/6 (
3
2

− µF̃
)1/2

H, (2.13)

in which F̃ = w2
i /((ρi −ρ2)gH/ρ0) and the empirical constant µ ≈ 0.8 (Abraham 1963).

This derivation assumed Gaussian profiles of the flow quantities, unlike the top-hat
approach considered in this study.

Similar to the one-layer case, the interaction of the incident and reverse flows
inhibits the incident flow from reaching the maximum height and thus settles at a
quasi-steady-state height, zss,2. Unlike the one-layer case, the return flow may intrude
on the interface or continue to the level of the source. Our experiments show that
the ratio of the steady-state height to the maximum height depends on whether the
return flow went back to the source or collapsed at the interface (see § 5.2 where we
have also compared our results with those of Bloomfield & Kerr 1998).

The most significant factors governing these flow regimes are the relative density
differences between the two layers and fountain and the maximum height relative to
the height, H , of the layer at the source. Explicitly, the relative density differences are
characterized by

θ =

∣∣∣∣ρ2 − ρ1

ρ2 − ρ0

∣∣∣∣ , (2.14)

and the relative maximum height is characterized by zmax/H .
θ =0 if ρ2 = ρ1, in which case the ambient is a one-layer fluid and the fountain

must return to the source. The same circumstance is expected if zmax <H since the
fountain does not reach the position of the interface.

θ =1 if ρ1 = ρ0, in which case the flow does not act like a fountain until impacting
the second layer. No experiments were conducted for this case, but the interested
reader may refer to Shy (1995), Friedman & Katz (2000) and Lin & Linden (2005b).
If the jet penetrates the interface (zmax > H ), the resulting fountain will be expected
to return to spread along the interface since the fountain entrains less dense fluid
from beyond the interface and therefore becomes lighter than the ambient fluid at
the source.

Irrespective of the regime that occurs, the flow goes on to spread as a radial current.

3. Theory: spreading velocities
In the following, we derive a theory to analyse the velocities of the spreading

currents at the source and the interfacial intrusions. We consider only the radial
velocities at the radius of the whole fountain where the return flow redirects from a
vertical to a horizontal flow.
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Figure 2. Schematics of (a) one-layer surface spreading currents, and (b) a model of the
interfacial spreading currents.

There are three cases to be considered. We first consider the theory for the spreading
velocities of the currents at the source in the one-layer case and then extend it to
examine source-spreading of fountains in two-layer fluids. The velocities of radial
intrusions at the interface of a two-layer fluid is considered as a third case.

3.1. Case 1: one-layer source-spreading

Figure 2(a) is a schematic showing the spreading of the currents at the source from a
fountain in a one-layer environment. Baines et al. (1990) modelled the return flow of
a turbulent fountain as an annular plane plume and obtained a formula for the total
lateral entrainment into the reverse flow as

Qe = B
(zmax − zv)

r0

Q0, (3.1)

where B ≈ 0.25 was obtained as an experimental constant and zv is the distance of
the virtual origin below the source (zv ≈ 0.8 cm for our experiments). Thus, the total
volume flux at the level of the source, just as the flow begins to spread outward is
given by

QT = Qe + Q0. (3.2)

If vf is the initial spreading velocity at a radial distance Rf , where Rf is the radius
of the return flow at the source, and h is the corresponding height of the spreading
layer just as the currents enter the ambient, then

QT = 2πRf hvf . (3.3)

Defining g′
T = g(ρ1 − ρs)/ρs to be the reduced gravity and ρs to be the initial density

of the spreading layer at r = Rf , dimensional analysis gives, for a buoyancy-driven

flow, a relationship of the form vf ∝
√

g′
T h. Using (3.3), we obtain

vf ∝
(

QT g′
T

Rf

)1/3

. (3.4)

Mizushina et al. (1982) show that the radius of the whole fountain is approximately
constant and is about 22 % of the quasi-steady state height, zss . Just before the return
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flow begins to spread into the ambient, conservation of buoyancy flux in the fountain
requires that at the level of the source

g′
T (Qe + Q0) = g′

eQe + g′
0Q0, (3.5)

⇒ g′
T QT = F0, (3.6)

since by definition the reduced gravity of the environment, g′
e, is zero. Thus, from

(3.4) and (3.6) we obtain

vf ∝
(

F0

Rf

)1/3

∝
(

F0

zss

)1/3

. (3.7)

This formula may also be obtained via scaling analysis. By balancing the driving
buoyancy force which scales as g′

T ρsRh2, and the retarding inertia force which scales
as ρshR3/t2, Chen (1980) obtained the position of the front, R, as a function of time,
t , as R(t) = cF

1/4
0 t3/4 (where c = 0.84 was obtained as an experimental constant), thus

the velocity, v, is given by

v =
dR

dt
= 0.59

(
F0

R

)1/3

, (3.8)

where the global volume conservation relation, QT t = πR2h, has been employed.
The same power law behaviour was also obtained by Britter (1979) by solving the
governing equations of motion and obtained the experimental constant c =0.75.

The scaling relationships above assume that the flow is a pure gravity current, its
motion being dominated by buoyancy forces. In the presence of substantial radial
momentum at the point where the flow enters the environment, dimensional analysis
shows that at small times compared with the characteristic time scale tMF = MR/FR

(in which MR is the radial component of momentum flux per unit mass and FR is the
radial buoyancy flux per unit mass), the flow is dominated by momentum such that
R(t) ∼ M

1/4
R t1/2 (Chen 1980), so that

v ∼ M
1/2
R /R. (3.9)

Kotsovinos (2000) showed a contant-velocity regime where R ∼ t for contant-flux
axisymmetric intrusions into a linearly stratified ambient. Kotsovinos argued that the
additional force driving the flow in such cases is the initial radial momentum flux
(ρsMR). Thus, balancing the kinematic momentum flux and the rate of change of the
inertia force which scales as ρshR3/t2, gives R(t) ∼ (MR/QT )t , so that

v ∼ MR/QT . (3.10)

In theory, the relations in (3.7) and (3.8) correspond to larger times within the
inertia–buoyancy regime when the flow is purely driven by buoyancy.

The radial component of momentum is unknown a priori ; however, owing to the
loss in momentum by moving from a vertical flow to a radial current, we assume that
the initial radial momentum flux, MR , is proportional to the momentum flux of the
return flow at the level of the source, Mret , and defined as

Mret = π
(
R2

f − r2
0

)
w2

ret, (3.11)

where wret is the velocity of the return flow at the level of the source. The results of
Bloomfield & Kerr (2000) show that the reverse flow of the fountain moving back
toward the source first accelerates to some height before settling to an almost constant
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velocity close to the source. Their results also suggest that at the source, the velocity
of the return flow is such that

wret ∝ M
−1/4
0 F

1/2
0 . (3.12)

In summary, if the radial momentum of the initial flow is substantial, then three
regimes are theoretically possible. These are the radial-jet regime where R ∼ t1/2,
the constant-velocity regime where R ∼ t and the inertia–buoyancy regime where
R ∼ t3/4. Thus, from (3.9), (3.10) and (3.7), and replacing MR by Mret , we obtain the
following relations which may be used to predict the initial velocity of the spreading
currents just as the flow begins to spread into the ambient:

vt�tMF
∝

(
M

1/2
ret /zss

)
, (3.13)

vt≈tMF
∝ (Mret/QT ), (3.14)

vt	tMF
∝ (F0/zss)

1/3. (3.15)

However, not all three regimes are necessarily present in a single experiment; the
presence of a particular regime largely depends on the competing effects of the radial
components of momentum and buoyancy in the flow (Chen 1980; Kotsovinos 2000).

3.2. Case 2: two-layer surface-spreading

We consider the case where the return flow in the two-layer case returns to spread
at the source as an axisymmetric current. In this case, there are two buoyancy fluxes
involved in the system: the initial buoyancy flux, F0, and the buoyancy flux after the
fountain penetrates the density interface, Fi . The total volume flux of the spreading
layer is given by the sum of the volume fluxes at the source and the interface, and
the flux entrained from the environment:

Qst = Qe + Q0 + Qi,

where zmax in (3.1) is now replaced by zmax,2. The spreading layer will consist of a
mixture of the source fluid and the fluid from the bottom and top layers. The mixture
of fluid determines the reduced gravity of the spreading layer such that

g′
st (Qe + Q0 + Qi) = g′

eQe + g′
0Q0 + g′

biQi,

⇒ g′
stQst = F0 + Fi, (3.16)

where g′
st = g(ρst − ρ1)/ρst is the reduced gravity and ρst is the initial density of the

spreading layer. Following the analyses in the one-layer case, we obtain the spreading
velocity for a buoyancy-driven flow as

vt	tMF
∝

(
g′

stQst

zss,2

)1/3

∝
(

F0 + Fi

zss,2

)1/3

, (3.17)

where zss,2 is the steady-state height in the two-layer case.
We assume that the velocity and momentum of the return flow at the level of

the source are proportional to the corresponding velocity and momentum in the
one-layer case where the ambient fluid is the first-layer fluid. As such, if the initial
radial momentum flux is substantial, then (3.13) and (3.14) may still be applied. By
replacing MR with Mret, this argument results in the velocity relations for the radial-jet
and constant-velocity regimes, respectively, as

vt�tMF
∝

(
M

1/2
ret /zss,2

)
, (3.18)

vt≈tMF
∝ (Mret/Qst ). (3.19)
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3.3. Case 3: two-layer interfacial-spreading

Experiments on axisymmetric intrusions into two-layer ambients from a source of
constant volume flux are limited in the literature. Lister & Kerr (1989) have considered
the case of the spreading of highly viscous fluid into a two-layer environment. They
employed both scaling analysis and lubrication theory to analyse their results. Timothy
(1977) considered the general case of a stratified inflow into a stratified ambient and
treated the two-layer case as a special circumstance. Most of his results were derived
by extending the Bernoulli and hydrostatic equations for two-dimensional rectilinear
flows to axisymmetric flows.

We show in Appendix B that by balancing the horizontal driving buoyancy force
and the retarding inertia force, for a buoyancy-driven flow, we obtain the relation for
the radial velocity of the intrusion as

v ∝
(

εg′
inQin

R

)1/3

, (3.20)

where ε = (ρ2 − ρin)/(ρ2 − ρ1). The reduced gravity of the intrusion in this case is
modified by the parameter ε. If the density of the intrusion is equal to the density of
the first-layer fluid (ρin = ρ1), then the one-layer relation (3.8) is retrieved from (3.20).

To model the case of the intrusions, we consider the fountain beyond the interface as
though it is a one-layer system with the source conditions replaced by the conditions
at the interface (see figure 2b). The volume flux entrained from the environment into
the return flow is now given by:

Qei = B
(zmax,2 − H − zv)

ri

Qi,

and the total volume flux into the spreading layer is given by the sum of the fluxes at
the source and the interface, and the flux entrained from the environment:

Qin = Qei + Q0 + Qi.

The mixture of fluid determines the reduced gravity of the interfacial intrusions,
and assuming the conservation of buoyancy relation εg′

inQin = F0 + Fi , we find the
same proportionality relationship as in (3.17), although the proportionality constant
is different:

vt	tMF
∝

(
F0 + Fi

Rf

)1/3

∝
(

F0 + Fi

zss,2

)1/3

. (3.21)

In the presence of a substantial radial component of momentum, (3.13) and (3.14)
may be applied with the initial source conditions replaced by the conditions at the
interface. This gives the velocity formulae for the radial-jet and constant-velocity
regimes, respectively, as

vt�tMF
∝ M

1/2
ret,i/zss,2, (3.22)

vt≈tMF
∝ Mret,i/Qin, (3.23)

where Mret,i is the vertical momentum of the return flow at the interface and defined

as Mret,i = π(R2
f − r2

i )w
2
ret,i with wret,i ∝ M

−1/4
i F

1/2
i , where wret,i is the velocity of the

return flow at the interface.
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Figure 3. Experimental set-up and definition of parameters.

4. Experimental set-up and analyses
4.1. Experimental set-up

Experiments were performed in an acrylic tank measuring 39.5 cm long by 39.5 cm
wide by 39.5 cm high (see figure 3). The experiments were conducted by injecting
less dense fluid downward into more dense ambient fluid; however, the direction
of motion is immaterial to the equations governing their dynamics since the fluid
is considered to be Boussinesq. A control experiment was conducted in a one-layer
homogeneous environment and 48 experiments were conducted in a two-layer fluid.
In all experiments, the total depth of fluid within the tank was HT = 38 cm. The tank
was filled to a depth of HT −H with fluid of density ρ2, where H =0 in the case of the
one-layer experiment and H = 5 cm or 10 cm in two-layer experiments. In two-layer
experiments, a layer of fluid with density ρ1 was added through a sponge float until
the total depth was HT . The variations in density were created using sodium chloride.
The typical interface thickness between the two layers was 1 cm, sufficiently small to
be considered negligible.

After the one- or two-layer fluid in the tank was established, a constant-head
reservoir of fresh water of density ρ0 was dyed with a blue food colouring and then
allowed to drain into the tank through a round nozzle of radius 0.2 cm. To ensure the
flow leaves the nozzle turbulently, the nozzle was specially designed and fitted with a
mesh having openings of extent 0.05 cm. The flow was assumed to leave at a uniform
velocity across the diameter of the nozzle. The flow rates for the experiments were
recorded using a flow meter connected to a plastic tube, and by measuring the total
volume released during an experiment. Flow rates ranged from 2.82 to 3.35 cm3 s−1,
and the Reynolds number of the experiments, defined as Re = wD/ν, ranged from
896 to 1066, where ν is the kinematic viscosity of water, and D = 2r0.

Experiments were recorded using a digital camera situated 250 cm from the front
of the tank. The camera was situated at a level parallel to the mid-depth of the tank
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and the entire tank was in its field of view. A fluorescent lighting apparatus was also
placed about 10 cm behind the tank to illuminate the system.

Using ‘DigImage’ software, the maximum penetration depth of the fountain, the
quasi-steady-state depth and the initial velocity, w0, were determined by taking vertical
time series constructed from vertical slices through the nozzle. The temporal resolution
was as small as 1/30 s and the spatial resolution was about 0.1 cm.

Horizontal time series were used to determine the velocity of the resulting spreading
currents. They were taken at a position immediately below the nozzle. Most time
series are symmetrical about the position of the nozzle and only one side is used for
the calculation of the velocities. Asymmetry in the time series may arise owing to
instabilities in the flow causing the front of the fountain at the maximum depth to
tilt to one side. These experiments were excluded from the analyses.

4.2. Qualitative results

We present in this section the qualitative results of the laboratory experiments before
giving detailed analyses of them. The snapshots from the experiments are flipped
upside down for conceptual convenience and for consistency with the theory. We
will first describe the results of the one-layer experiment before proceeding to the
two-layer case.

4.2.1. One-layer experiment

Figures 4(a) to 4(d) show snapshots of the one-layer experiment which were taken
1, 3, 5 and 8 s, respectively, after the experiment started. The density difference
between the fountain and the ambient fluid was |ρ0 − ρ1| =0.0242 g cm−3 and the
initial velocity was w0 = 24.3 cm s−1. We observe the characteristic widening of the
fountain as it entrains fluid from the surrounding homogeneous fluid. It reaches its
maximum height at t ∼ 1 s (figure 4a), at which time the top of the fountain forms
a pointed shape before collapsing back toward the source. The front then broadens
and spreads outward as it returns downward forming a curtain around the incident
upward flow (figure 4b). The interaction of the return flow with the main upflow
inhibits the rise of fluid from the source and causes the fountain to settle at a quasi-
steady-state height which is moderately below the maximum height. When the return
flow reaches the level of the source, it begins to spread radially outward (figure 4c).
The spreading layer then propagates radially away from the source (figure 4d). The
experiment is stopped before the spreading layer reaches the sidewalls of the tank.

Figure 5(a) shows the horizontal time series taken from this experiment, illustrating
the spreading of the surface flow on both sides of the nozzle (situated at x = 0 cm).
The parabolic nature of the time series indicates the change in speed of the current
as it moves away from the source.

Figure 5(b) shows the vertical time series taken for this experiment, and illustrates
the positions of the maximum height, zmax , and the steady-state height, zss . The value
of the ratio zss/zmax was found to be 0.74 for this experiment, comparable to the
average value of 0.7 obtained by Turner (1966). The height of the spreading layer
was observed to be almost constant as it spreads into the ambient (not shown), and
was observed to be proportional to zmax (Baines et al. 1990).

4.2.2. Two-layer experiments

In the presence of a two-layer ambient, the return flow of a fountain may go back
to the level of the source or it may mix sufficiently with the second layer so that
it goes back to the interface. In some circumstances, it may do both. Here, only
snapshots for a situation leading to interfacial intrusions are shown.
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Figure 4. Snapshots of the one-layer experiment taken at (a) t = 1 s; (b) 3 s; (c) 5 s; (d) 8 s.
The images have been flipped vertically for conceptual convenience.

Figure 6 shows snapshots of a two-layer experiment taken 2, 5, 10, 20 and 25 s after
the experiment was started. In this experiment, the density difference between the
fountain and the ambient fluid at the source was |ρ0 − ρ1| =0.001 g cm−3. The density
difference between the two layers was |ρ1 − ρ2| =0.0012 g cm−3. The initial velocity
was w0 = 23.9 cm s−1 and H =5 cm. When the experiment begins, the fountain again
increases in width as it entrains fluid from the surrounding ambient. It impinges
upon the interface at z = 5 cm and penetrates through without noticeable change in
structure (figure 6a).

After reaching the maximum height, the front of the fountain starts to broaden as
more fluid is supplied from the source (figure 6b). It then returns downward, owing to
its buoyancy excess, and collapses around the incident flow, similar to its behaviour
in the one-layer case.
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Figure 5. (a) Horizontal and (b) vertical time series for a one-layer experiment. The horizontal
time series is constructed from a slice taken at z = 0 cm. The vertical time series is taken from
a vertical slice through the source at x = 0 cm.

In this circumstance, however, the return flow becomes trapped at the interface
and does not return to the source (figure 6c). At first, the return flow overshoots the
height of the interface around the axis of the fountain before rising back to spread
radially along the interface. The degree of overshoot is more or less pronounced,
depending upon the experimental conditions. The process continues in a quasi-steady
state (figure 6d). The spreading layer is observed to be thicker around the axis of the
fountain and gradually reduces in thickness away from the axis (figure 6e).

Horizontal and vertical time series from this experiment are shown in figures 7(a)
and 7(b), respectively. The former shows an intrusion moving with almost uniform
radial speed toward the sidewalls of the tank. The time series is also observed to
be symmetric about the source (situated at x = 0 cm). The measured positions of the
maximum and steady-state heights are indicated on the vertical time series. Compared
to the one-layer case, the average steady-state height is almost equal to the maximum
height. This occurs because the return flow of the fountain intruded on the interface
and so the distance over which the incident and return flows interact is reduced,
thereby increasing the steady-state height.

5. Quantitative analyses
In this section, we quantitatively analyse the experimental results and compare them

with theoretical predictions. The main aim is to characterize the various regimes of
flow, to quantify the maximum penetration height in the two-layer ambient flow and
to analyse the radial velocity of the resulting axisymmetric currents and intrusions.
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Figure 6. As in figure 4, but for snapshots of a two-layer experiment. (a) t =2 s; (b) 5 s;
(c) 10 s; (d) 20 s; (e) 25 s.

5.1. Regime characterization

The three regimes of flow observed in the experiments: in regime S, the return flow
penetrates the interface, but returns vertically to the source; in regime I, the return
flow intrudes at the interface; in regime B, a combination of both occurs.
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Figure 7. (a) As in figure 5, but for horizontal and (b) vertical time series for a two-layer
experiment.

To classify the regimes of flow, we first considered an approach used by
Bloomfield & Kerr (1998) to determine whether a fountain in a linearly stratified
environment will spread at an intermediate level or spread at the source. In their
method, the density of the fountain at the maximum height was first calculated and
the height in the environment where fluid with this density would intrude was used as
an estimate of the spreading height. To compare our results to those of Bloomfield &
Kerr (1998), we calculated the density of the fountain at the maximum height, ρmax ,
and compared it to the density in the first layer. In figure 8(a) we have plotted ρmax

against the density ρ1. If ρmax is larger (smaller, for fountains directed downward)
than ρ1 , it is expected that the fountain will spread at the source. The experimental
results show that this approach gives only a moderate classification of the regimes
in the two-layer stratified case. About 28 % of the intrusions fell below the solid
line in figure 8(a), predominantly for H = 10 cm cases. This probably means that it is
possible to have sufficient mixing in the return flow by the time it reaches the interface,
leading to interfacial intrusions. So a straightforward application of the diagnostic
of Bloomfield & Kerr (1998) seems inappropriate for two-layer fluids because it does
not account for the height of the interface, H .

A second classification of the regimes is shown in figure 8(b) where we have plotted
the relative density differences θ = (ρ2 − ρ1)/(ρ2 − ρ0) against the relative maximum
height zmax/H .

If θ � 0.15, figure 8(b) shows that intrusions form if zmax � 2H . In which case the
return flow entrains substantially less dense fluid from beyond the interface, making
it lighter than the lower-layer fluid.
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Figure 8. (a) Regime diagram following the method of Bloomfield & Kerr (1998); showing
circumstances under which the return flow of a fountain spreads at the level of the source
(open symbols), at the interface (closed symbols), or both. The solid line is expected to separate
the open symbols from the closed symbols. (b) Regime diagram following our approach; the
same symbols as (a). The dotted line represents an empirical formula that separates the two
regimes and is given by (5.1).

If θ � 0.15, the return flow reaches the source independent of the relative maximum
height. In this case, the return flow also entrains less dense fluid from beyond the
interface, but it is still heavier than the lower-layer fluid by the time it arrives at the
interface. Likewise if zmax � 2H , the return flow always reaches the source because it
is not sufficiently diluted by the ambient beyond the interface.

There were two experiments which resulted in regime B. They occurred for
experiments with zmax ≈ 2H . In these cases, the outer part of the return flow entrains
more of the less dense fluid from beyond the interface than the inner part. The lighter
outer part then begins to spread radially at the interface while the heavier inner part
continues to fall to the source. The amount of fluid that intrudes at the interface may
sometimes be smaller than the fluid that continues to the source.

The empirical function used to separate the intrusion and source outflow regimes
is given by

θ = 0.15 +
1

50(zmax/H − 1.5)3
. (5.1)

This is plotted as the dashed line in figure 8(b).
The second method of classification is therefore better for two-layer stratified fluids,

as shown in figure 8(b). We note that the only calculation involved in this approach
is that of zmax which is done from the source conditions (see (2.7)), unlike ρmax which
requires calculation of the axial parameters at the interface.

5.2. Maximum height

Figure 9(a) plots the experimentally measured values of zmax,2 and compares them
with the theoretical prediction given by (2.12). There is good agreement in the data
with a correlation of about 96 %. The results also compare well with the theoretical
prediction of Abraham (1963) (see (2.13)).
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Figure 9. (a) The maximum penetration height and (b) the ratio of the steady-state height to
the maximum height.

Figure 9(b) plots the ratio zss,2/zmax,2 against the source Froude number Fr0. If
θ < 0.15, the average value of the ratio was found to be 0.74, which is comparable to
the one-layer case. For the experiments with θ > 0.15 and zmax > 2H in which case the
return flow intruded on the interface, the average value was 0.88. This occurs because
the return flow penetrates little beyond the interface and so there is less interaction
between the return and incident flows. If θ > 0.15 and zmax < 2H , the average value
was found to be 0.80, in this case the fountain penetrated little into the second layer.

Results of the ratio zss,2/zmax,2 are comparable to the findings of Bloomfield & Kerr
(1998) for a fountain in a linearly stratified fluid where the average value of the ratio
was found to be 0.93, also bigger than the value 0.70 for a fountain in a uniform
ambient. This value is a little higher than our value of 0.88 for interfacial intrusions.
This is probably because in the case of linearly stratified fluids, the fountain could
intrude at intermediate heights which are higher than the equivalent heights of the
two-layer interface. This means that, effectively, the distance over which the upflow
and downflow interact is even shorter in a linearly stratified ambient, leading to a
higher value of the ratio.

5.3. Radial source and intrusion speeds

We measured the initial velocity of the radially spreading currents by taking the slope
near x ≈ Rf of horizontal time series as shown, for example, in figure 10.

Measurements of the time and distance from the horizontal time series determined
how the position of the front scales with time near x = Rf . Figure 11 shows some
typical log–log plots of distance against time used to determine the scaling relationship.
The experiments showed steady-state (R ∼ t) and inertia–buoyancy (R ∼ t3/4) regimes
in the flow.

To gain a better understanding of the starting flow regimes, we defined a critical
Froude number to characterize the competing effects of momentum and buoyancy in
the return flow at the point of entry of the current into the ambient. In the case of
the flows that returned to the source, the Froude number is defined by

Frs = wret/(g
′
retzmax,2)

1/2, (5.2)
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Figure 10. Typical approach of calculating the initial spreading speeds with �x ≈ Rf

(experiment with |ρ1 − ρ0| = 0.0202, |ρ2 − ρ1| = 0.0005, H = 5 cm, w0 = 26.26 cm s−1).
�, experimental data; - - - , fitted line.
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Figure 11. Typical initial growth relationships between the radial distance and time, indicating
(a) R ∼ t (experiment with |ρ1 − ρ0| = 0.0022, |ρ2 − ρ1| = 0.005, H = 5 cm, w0 = 25.95 cm s−1),
and (b) R ∼ t3/4 (experiment with |ρ1 − ρ0| = 0.0202, |ρ2 − ρ1| = 0.0005, H = 5 cm, and
w0 = 26.26 cm s−1). �, experimental data; —, fitted line.

where g′
ret = (F0 + Fi)/Qst is the reduced gravity of the return flow at the level of the

source. In the case of the interfacial flows, the Froude number is similarly defined by

Fri = wret,i/(g
′
ret,izmax,2)

1/2, (5.3)

where g′
ret,i is the reduced gravity of the return flow at the interface. Figure 12 gives

an approximate classification of these regimes. It shows that the power law relation
R ∼ tα with α ≈ 0.75 occurs for smaller values of the Froude number (Frs < 0.25
and Fri < 0.4). In this case, the initial flow is driven purely by buoyancy forces while
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Figure 13. Radial initial surface spreading velocities for (a) R ∼ t , and (b) R ∼ t3/4.

for larger values of the Froude number (Fr s > 0.25 and Fr i > 0.4), both momentum
and buoyancy play a role in the initial flow, giving rise to a power-law exponent
α ≈ 1.0.

If instabilities develop in the flow, causing the fountain to tilt initially to one side
of its vertical axis, then these scaling relationships may be violated. This was also ob-
served to occur if, in the case of the intrusions, there was a very strong overshoot of the
return flow before rising back to spread along the interface. The velocity data used to
determine the experimental constants in the theory do not include those experiments.

5.3.1. Source-spreading speeds

Figure 13 plots the measured speeds of the radially propagating currents at the
source compared with the theoretical estimates of (3.17) and (3.19). We see that there
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Figure 14. Radial initial intrusion velocities for (a) R ∼ t , and (b) R ∼ t3/4.

is fairly good agreement between the theory and the measurement. The theoretical
equations for these two regimes then become

vt≈tMF
= (4.10 ± 0.14)

(
Mret

Qst

)
, (5.4)

vt	tMF
= (0.84 ± 0.14)

(
F0 + Fi

zss,2

)1/3

. (5.5)

The regimes of flow in this case are the constant-velocity regime (R ∼ tα with
α = 1.0 ± 0.10) and the inertia–buoyancy regime (α = 0.75 ± 0.04).

5.3.2. Intrusion speeds

Figure 14 plots the measured intrusion speeds against the theoretical estimates of
(3.21) and (3.23). The theoretical equations for these two regimes then become

vt≈tMF
= (0.77 ± 0.15)

(
Mret,i

Qin

)
, (5.6)

vt	tMF
= (0.17 ± 0.09)

(
F0 + Fi

zss,2

)1/3

. (5.7)

The regimes of flow in this case are the constant-velocity regime (α = 1.0 ± 0.09) and
the inertia–buoyancy regime (α = 0.75 ± 0.07).

We observe that the proportionality contants in the interfacial intrusions are much
smaller than the constants in the source-spreading case. This is probably caused by
higher retarding forces exerted by the two fluid layers on the interfacial currents
unlike the currents at the source which propagate on the interface between air and
liquid and therefore experienced a much smaller resisting force from the ambient.

6. Summary and conclusions
We have classified the regimes of flow that result when an axisymmetric turbulent

fountain is discharged into a two-layer ambient. The classification was made using the
empirically determined parameter, θ = (ρ2 − ρ1)/(ρ2 − ρ0), and the relative maximum
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height, zmax/H . The results show that if zmax � 2H , the return flow will go back to
the source irrespective of the value of θ . However, if zmax � 2H , the return flow will
collapse and spread radially at the interface if θ � 0.15.

We found good agreement between theory and experiment for the maximum vertical
penetration height. In the case of flows which returned to the source, the ratio of the
quasi-steady-state height to the maximum height, zss,2/zmax,2, was found to depend
on whether the return flow went back to the source or collapsed at the interface. The
ratio is closer to unity (zss,2/zmax,2 ≈ 1.0) for intrusions because the return flow does
not retard the incident flow in the ambient near the source.

Radial currents that result from the return flow of a fountain spreading at the source
or interface either at constant velocity (being driven by both the radial components
of momentum and buoyancy) or spreading as R ∼ t3/4 (being driven by buoyancy
forces alone). These regimes are distinguished by a critical Froude number Fr s ≈ 0.25
or Fr i ≈ 0.4.

In the future, we wish to extend the ideas developed in this study to the case of the
dispersion of pollutants from flares which disperse in the presence of an atmospheric
inversion.

This research was supported by the Canadian Foundation for Climate and
Atmospheric Science (CFCAS).

Appendix A. Virtual origin correction
Morton (1959b) predicted the virtual origin for a negatively buoyant forced plume

to occur at

zv = 101/2γ 3/2Lm

∫ 1

1/γ

(1 − τ 5)−1/2τ 3dt, (A 1)

where

Lm =
1(

23/2α̃1/2π1/4λ
) M

3/4
0

|F0|1/2
, Γ =

5λ2

4α̃π1/2

|F0|Q2
0

M
5/2
0

, γ = (1 − Γ )1/5.

The entrainment constant is α̃ = 0.085 for fountains (Bloomfield & Kerr 2000) and
λ= 1 for top-hat profiles.

Appendix B. Scaling analyses: radial intrusion in a two-layer environment
Consider an axisymmetric intrusion of density ρin from a source of constant volume

flux Qin into a two-layer environment with a top layer of density ρ1 and a lower layer
of density ρ2. Let h be the height of the intrusion at time t and H be the distance
of the interface from the surface (figure 15). We assume small density differences
between the intrusion and the ambient and neglect surface-tension effects.

The conservation of volume relation is given by

Qint ∼ R2h, (B 1)

where R is the position of the front at time t . The pressure distribution within the
intrusion can be obtain from the hydrostatic equation (dp/dz = −ρing) such that

p = p0 − ρingz + g(ρin − ρ1)h1, (B 2)
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Figure 15. Schematic of intrusion into a two-layer environment.

where p0 = ρ1gH . A relation between h1 and h is obtained via a hydrostatic balance
(Timothy 1977):

h1 =

(
ρ2 − ρin

ρ2 − ρ1

)
h. (B 3)

Thus, from (B 2), we find the pressure distribution

p = p0 − ρingz + ρinεg
′
inh, (B 4)

where ε = (ρ2 − ρin)/(ρ2 − ρ1) and g′
in = g(ρin − ρ1)/ρin. The radial pressure gradient

is therefore given by

∂p

∂r
= ρinεg

′
in

∂h

∂r
. (B 5)

At the interface, z = 0, the pressure scales as p ∼ ρinεg
′
inh and so the horizontal driving

pressure force should scale as the product of the pressure and the cross-sectional area:

Fp ∼ ρinεg
′
inRh2. (B 6)

In the inertia–buoyancy regime, the opposing force is the inertia force, Fin, which
scales as the product of the mass and acceleration:

Fin ∼ ρinhR3/t2. (B 7)

Balancing (B 6) and (B 7) and using (B 1), we obtain

R(t) ∼ (εg′
inQin)

1/4t3/4. (B 8)
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